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ABSTRACT
Spinal cord segmentation is an important step to empirically
quantify spinal cord atrophy that can occur in neurological
diseases such as multiple sclerosis (MS). In this work, we
propose a novel method to find the globally optimal segmen-
tation of the spinal cord using a high dimensional minimal
path search. The spinal cord cross-sectional shapes are rep-
resented using principal component analysis (in the probabil-
ity simplex) which captures most of spinal cord’s axial cross-
sectional variation and partial volume effects. We propose
modifications to the A* minimal path search algorithm that
drastically reduce the required memory and run-time to make
our high dimensional minimal path optimization computa-
tionally feasible. Finally, we validate our results over five
vertebrae levels of both healthy and MS clinical MR vol-
umes (20 volumes total) and show improvements on volume
agreement with expert segmentations and less user interaction
when compared to current state-of-the-art methods.

Index Terms— Segmentation; spinal cord analysis; min-
imal paths; principal component analysis

1. INTRODUCTION

Multiple Sclerosis (MS) studies have shown that spinal cord
atrophy contributes strongly to a patient’s physical disabil-
ity (e.g. walking speed). Accurately segmenting the spinal
cord increases our ability to quantify the physical atrophy of
the cord which may allow us to better monitor both the pro-
gression of the disease and the effectiveness of treatments [1].
However, spinal cord segmentation is a challenging problem
as the signal changes over the length of the cord, images are
often noisy due to patient movement, the boundary of the cord
is not well defined in regions where it contracts the wall of the
spinal canal, and the cord’s shape can change as the disease
progresses [2]. As well, a typical cord scan, even at high res-
olution, has many partial volume voxels relative to the total
number representing the cord. While manual segmentations

JK, RT, and GH were partially supported by NSERC and Biogen Idec
Canada. CM was supported by the Canadian Breast Cancer Foundation and
the Canadian Cancer Society Research Institute.

by experts are generally considered to be accurate, they are
more susceptible to operator variability and can take a con-
siderable amount of operator time per scan [2]. This makes
semi-automated methods desirable. There are a number of re-
lated works on the problem of spinal cord segmentation [2–5].

Schmit and Cole [3] performed segmentation using 3D
seeded region growing and observed the narrowing of the
spinal cord after injury in MRI scans. Horsfield et al. [4] used
an active model of the cord surface where a user marked the
center line of the cord on representative slices. McIntosh and
Hamarneh [5] used locally optimal 3D deformable organisms
to segment the cord. This was extended by McIntosh et al. [2]
where the spinal cord segmentation optimization problem was
split into two sequential steps: medial path finding (based on
two 2D livewires, which can require manual corrections) fol-
lowed by a medial-guided spinal crawler with cross-sectional
shape fitting. Our proposed high dimensional path optimiza-
tion treats these two steps in a single optimization and guar-
antees a global solution (from only two seed points).

Globally minimal paths to segment tubular objects were
introduced by Li and Yezzi [6] who applied a 4D search to
find the spatial coordinates and radius of 3D tubular objects
between two user entered seed points. Poon et al. [7] used
a similar minimal path approach to interactively segment 2D
vessels by moving to a 3D space and searching over the radii.

Our proposed method finds the minimal path in high di-
mensions between two user entered seed points. This mini-
mal path represents the globally optimal segmentation of the
spinal cord. This work is most similar to [6] and [7]. Our con-
tribution is the extension of these methods to higher dimen-
sional space where we demonstrate a novel method to seg-
ment the spinal cord using an A* minimal path optimizer. Di-
rectly extending these methods to higher (than 4) dimensions
can become infeasible due to the high computational needs.
Our approach ensures that the globally optimal path can be
found by automatically ignoring many suboptimal paths us-
ing a heuristic and lowers our space requirements by not re-
quiring an explicit graph representation prior to searching. As
well, we describe a probabilistic shape representation (based
on principal component analysis, PCA) with implicit regular-



ization capable of capturing partial volume effects that can be
extended to arbitrarily high dimensions.

PCA has been used as an efficient method to represent
high dimensional shapes by representing complex objects us-
ing only a few principal components. Cremers et al. [8] en-
code an arbitrary shape where each pixel is given a probability
it is within the shape and apply PCA to this model. To ensure
that PCA does not leave the range of valid probability values
(i.e. the unit simplex) Changizi and Hamarneh [9] propose
the Isometric Log-Ratio (ILR) transformation where they per-
form PCA in the ILR space to ensure the probability vectors
stay in the valid simplex space. Andrews et al. [10] perform
PCA in this ILR space and incorporate this shape prior di-
rectly into an energy function for image segmentation. In our
work we adopt the ILR-based PCA in the high dimensional
minimal path search.

2. METHODS

In this section we describe our PCA based shape representa-
tion, followed by a description of our energy function, and
finally we give an overview of our minimal path optimizer.

2.1. Probabilistic PCA based Shape Representation

We learn a model of the shape of the axial cross section of
the spinal cord using PCA. This PCA based model allows us
to learn a mean shape and deform it in ways that respect the
main modes of variation found within the training data. By
manipulating the eigenweights of the three principal compo-
nents (PC), we found our model can theoretically describe a
mean Jaccard similarity coefficient of 0.874 and a mean area
similarity of 97.18% (Section 3 for similarity measures) of
the variation found within the training slices. With our PCA
based shape model, we represent a single axial slice of the
cord using the following six dimensions: the x, y, z spatial
coordinates describing the centroid of the cross section, and
three PC weight values for describing its shape. We restrict
the PC weights to only vary by ±3 standard deviations.

To capture the partial volume effects, our shape is embed-
ded into an image such that each pixel has a value associated
with it between 0 and 1. This value represents the probability
that a random point inside a single pixel contains the spinal
cord. Hence a value of 0 would signify the pixel does not
contain the spinal cord and a value of 1 represents a pixel that
is fully part of the spinal cord.

Since we adopted a probabilistic representation, we need
to consider that standard PCA is not constrained to the geom-
etry of the unit simplex (space of non-negative vectors with
unity sum) and can produce shapes that are invalid (outside
the simplex) [9]. To stay within the simplex, we map our data
to the ILR space before applying PCA and then map the re-
sulting shape back to our probabilistic shape space [10]. To
convert to ILR space, the following ILR transformation is de-

rived for the two label case,

q = ILR(p, e) = ln
p1
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ln
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where, p = [p1, p2] is a vector of our probabilistic values;
e = [0.804, 0.196] is the Aitchison-orthonormal basis in the
simplex; and g(x) =

√
x1x2 is the geometric mean. To con-

vert back to our probability space, we calculate,

p = ILR−1(q, e) = (eq1 + eq2)−1 [eq1, e
q
2] . (2)

Given our learned shape space, we can apply varying PC
weights to it to deform our shape as can be seen in Fig. 1.

Fig. 1. Sample spinal cord cross-sectional shapes generated
by randomly sampling the PC weights. Note the probabilistic
pixels and the non-ellipsoidal shapes.

2.2. Energy Function

Our energy function is designed to model two characteristics
of the spinal cord: 1) the cord is a lighter object usually sur-
rounded by an outer dark ring of cerebrospinal fluid, E∇, and
2) the intensities found in the spinal cord should be similar,
Eσ . We define E our energy function as

E = αE∇ + βEσ (3)

where α, β are weights for each energy term (both set to 1 for
our experiments). Note that each of these terms are data terms
as the regularization is built directly into our shape represen-
tation and optimizer; we constrain the PC weights (i.e. shape)
to only vary by one standard deviation across slices, and en-
force the spatial regularization through graph connectivity.

In E∇, our goal is to ensure the gradient vectors on the
object’s boundary point towards the center of the cord:

E∇ =

∫
Ω

((f (∇P (x, y)) ◦ ∇I(x, y)) ·R(x, y)) dx dy∫
Ω
|f (∇P (x, y))| dx dy

(4)

where (x, y) ∈ R2 is a point in our image domain Ω; P is
the probability of each pixel belonging to the cord (Fig. 1);
I represents our image; R is composed of vectors pointing
towards the centroid of the shape found in P ; f is a Heaviside
step function to only allow for strong edges and to treat all
edges equally; and ◦ and · denote element wise multiplication
and the dot product, respectively.

Our second energy term,Eσ , assigns low energy to shapes
that contain pixel intensities whose standard deviation σp =
std(I(x, y); (p (x, y)>ε)) agrees with standard deviations, σ,
of spinal cord intensities collected from our training data. We



define σ̄ as the mean learned standard deviation of intensities
(i.e. mean(σ)); std(σ) as the standard deviation of the learned
standard deviation of intensities, σ. We set σlower = σ̄ − 3 ∗
std(σ), and σupper = σ̄ + 3 ∗ std(σ). Eσ penalizes shapes
whose σp exceeds three standard deviations from the learned
σ̄, calculated as:

Eσ(σp,σ) =


(σlower − σp), if (σp < σlower)

(pσ − σupper), if (pσ > σupper)

0 otherwise.
(5)

2.3. Minimal Path Optimizer

We optimize our energy function using an A* minimal path
search. A standard approach would be to use Dijkstra’s algo-
rithm and apply it to high dimensions (initially we used the
N-D Dijkstra’s algorithm provided by [11]). However, this
approach is problematic since it (and most traditional mini-
mal path methods) requires as input to the minimal path al-
gorithm a graph composed of nodes and edges. The memory
required to explicitly encode all the edges of our graph ex-
plodes due to the high connectivity of 6D graphs. For our 6D
volume, a fully connected (26-connected in 3D space) single
node would require 36 = 729 edges. We found that even with
modifications to the existing code and underlying data struc-
tures of [11], we were unable to lower our memory require-
ments to make our method computationally feasible (e.g. run-
ning our method on a single cropped volume of 25×20×80
could require over 70 GBs). As well, a further drawback is
the considerable run-time needed to create such a graph.

To reduce the graph creation run-time as well as the mem-
ory requirements of the A* algorithm, we observed that the
structure of a volume allows us to infer, on-the-fly during
run-time, the connectivity of a voxel. Thus rather than ex-
plicitly storing all the edges as input, we modify the minimal
path algorithm to index into our volume and determine the
appropriate neighbours at run-time. This removes the need to
encode the edges prior to running our minimal path method.
As we now only need to keep a subset of the edge values in
memory (those in the in the minimal path “open set” queue),
our memory requirements drop drastically which allows us to
search over larger volumes (e.g. the 70 GB dropped to 4 GB).

We “prune” certain edges of our graph to create a regular-
ization prior. We use the prior knowledge that the spinal cord
in the MRI volume extends superior to inferior i.e. along the z
dimension. We thus remove any edge that does not transition
in the z dimension towards the end (inferior) seed point. As
well, we discretize the possible PC weights to use 7 possible
multiples of the standard deviation values {0,±1,±2,±3}.

We implement an efficient low-memory A* search to
find the globally optimal path between two user entered seed
points where the returned minimal path contains the 6D co-
ordinates that represent the globally optimal segmentation.
We chose A* over Dijkstra’s algorithm since A* maintains

globally optimality while allowing us to define heuristics that
can speed up the run-time (run-time is between 1 to 5 hours).

Fig. 2. (Left) Our method’s segmentation shown in a sagittal
MR slice. (Right) Axial slice with misleading image data (ar-
row). Darker areas represent lower segmentation probability
of the spinal cord.

3. RESULTS

We validate our method over 20 MRI scans composed of 10
healthy and 10 MS patients scanned with a 3.0T scanner and
1.5T scanner respectively (scans were from different studies)
with a voxel size of 0.9760 × 0.9760 × 1 mm. Each scan
was segmented by an expert and, given its use in previous
studies [2], we consider this a reliable expert segmentation.
We validate our method over a challenging area of the cord
(C3-C7) of 80 slices.

To seed our method, we extract the approximate center
of the expert segmentation for the first and last expertly seg-
mented slice to get the first three spatial dimensions. We use
the mean shape of our spinal cord PCA model (we build a
separate MS and non-MS PCA model with the testing vol-
ume omitted) as the three PC weight dimensions (i.e. zero
weights). While this does not give an optimal segmentation
for the first and the last slice, our method quickly converged
to a reasonable segmentation after one or two slices. A user
could get around this limitation by placing the seed a few
slices before and after the desired locations. We use our start
and end seed point to roughly crop our volume around the
cord to help eliminate voxels from our search space that can-
not be part of the spinal cord.

Given the small structure of the spinal cord it is important
to consider the contributions of partial volume effects (PVE)
on the segmentations to ensure accuracy (Fig. 2). The Jaccard
similarity index is a commonly used measure to determine
the similarity between shapes and is defined as J(A,G) =
|A∩G|
|A∪G| . We modify Jaccard to consider PVE and decrease the
score as the PVE for each pixel increases in difference be-
tween each shape. We calculate this as,

JPVE(A,G) =

∑
x

∑
y min(A(x, y), G(x, y))∑

x

∑
y max(A(x, y), G(x, y))

(6)



Method Mean Median Min Max Std.Dev
JMAP 0.789 0.800 0.473 0.949 0.076
JPVE 0.784 0.797 0.451 0.906 0.066

AreaS % 94.33 95.15 88.72 99.88 3.30
JMAP 0.855 0.869 0.394 0.989 0.083
JPVE 0.832 0.848 0.379 0.915 0.069

AreaS % 96.88 97.77 90.32 99.81 2.94

Table 1. Similarity in shape overlap (JMAP = binary and
JPVE = probabilistic Jaccard) and computed area (AreaS)
between automated and expert segmentations for multiple
sclerosis patients (upper three rows), and healthy (non-MS)
patients (lower three rows).

where A and G are the automated and expert (ground truth)
shapes embedded into the same sized image. The “min”
function represents a probabilistic intersection and the “max”
function represents a probabilistic union. We include the
crisp version of Jaccard (round PVE) in our results denoted
as JMAP.

To determine whether the automated method is a useful
surrogate of the manual method for detecting global cord at-
rophy, we also compare the computed volumes between the
automated and expert segmentations regardless of their over-
lap. As the cross-sectional area (CSA) has been shown to be a
good indicator of the progression of MS, a high agreement be-
tween an automated and expert segmentation would be a good
indication of the clinical utility of a particular method. To
measure this, we use a similarity ratio, AreaS , as described
in [2]. The AreaS is given as 1−min(|(A/G)− 1|, 1) which
returns a 0% accuracy if the automated volume overestimates
the expert volume by more than 200%.

In Table 1 we see how our automated segmentation com-
pares with the expert segmentation. As might be expected,
our method performs better overall on the healthy patients
than the MS patients due to the increased irregularity of the
spinal cord as MS progresses and the change from a 3T to
a 1.5T scanner. Our results compare favourably with other
similar methods and requires less user input. In [2], which
requires some user correction of the Live-wire path, they re-
port a mean volume similarity AreaS of 94.31% for MS and
91.60% for healthy patients. Noticeably, for healthy patients
they report a min similarity of 77.33%, compared to our re-
ported min similarity of 90.32% which suggests our method
is more capable of capturing the cord’s true volume.

4. CONCLUSIONS AND DISCUSSIONS

We proposed a method to segment the spinal cord by find-
ing a minimal path in 6D, whose globally optimal parameters
define our segmentation. Although we used a 6D representa-
tion, this method could be extended to higher dimensions but
at a cost in both memory requirements and computation time.
We address some ways to reduce this in the form of our opti-

mized A* search that take advantage of the volume structure
and edge pruning to drastically reduce the needed memory.
Future work would look at further space and run-time opti-
mizations and correlating the automated segmentation to the
progression of MS.
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