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Novel Morphological and Appearance Features
for Predicting Physical Disability from MR
Images in Multiple Sclerosis Patients

Jeremy Kawahara, Chris McIntosh, Roger Tam and Ghassan Hamarneh

Abstract Physical disability in patients with multiple sclerosis is determined by
functional ability and quantified with numerical scores. In vivo studies using mag-
netic resonance imaging (MRI) have found that these scores correlate with spinal
cord atrophy (loss of tissue), where atrophy is commonly measured by spinal cord
volume or cross-sectional area. However, this correlation is generally weak to mod-
erate, and improved measures would strengthen the utility of imaging biomarkers.
We propose novel spinal cord morphological and MRI-based appearance features.
Select features are used to train regression models to predict patients’ physical dis-
ability scores. We validate our models using 30 MRI scans of different patients with
varying levels of disability. Our results suggest that regression models trained with
multiple spinal cord features predict clinical disability better than a model based on
the volume of the spinal cord alone.

1 Introduction

Multiple sclerosis (MS) studies have found that a patient’s physical disability cor-
relates with spinal cord atrophy [1, 7, 8, 12, 16]. Measuring spinal cord atrophy
is potentially useful for monitoring the progression of diseases or the effectiveness
of therapies [12]. Spinal cord atrophy is defined as a loss of tissue and commonly
measured by cross-sectional area (CSA) or spinal cord volume [7, 8, 12]. To quan-
tify the CSA, user-guided computer software is often used to assist in delineating the
spinal cord from a 3D MRI (e.g. using one of several recently developed approaches
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[4, 5, 10, 11, 15]). The segmented cord’s volume or averaged CSA is computed and
correlated with the patient’s clinical disability score.

To quantify the clinical disability of a patient with MS, clinicians commonly rely
on the Expanded Disability Status Scale (EDSS) [6] which assigns the patient a
number between zero (a normal neurological exam) and ten (death from MS). Al-
though commonly used, the EDSS score suffers from reproducibility issues, focuses
largely on a patient’s ambulatory impairment, and is restricted to an ordinal scale.
This motivated the development of the Multiple Sclerosis Functional Composite
(MSFC) score [3], which we discuss in section 2.5.

While the CSA of the spinal cord has been shown to correlate with clinical score,
this correlation is generally moderate with some studies failing to show the expected
reduction in CSA [9]. This may be because a reduction in cord size is only one global
aspect of atrophy, and few other features that capture more subtle aspects have been
explored. Schnabel et al. [13] explored local and global shape measurements across
scales and concluded that the spinal cord shape should be measured across a range
of scales. In conventional and diffusion tensor (DT) MRIs, Benedetti et al. [1] iden-
tified the brain T2 lesion volume, CSA and the mean fractional anisotropy of the
cervical cord as features that independently influenced the EDSS score using a mul-
tivariate regression model. Composite scores, obtained by combining these three
features, improved the correlation with clinical scores when compared to the cor-
relations of a single feature. However, DT-MRI is much less commonly acquired
than structural MRI. Valsasina et al. [16] explored the regional atrophy of the cervi-
cal cord by applying voxel-wise statistics on registered spinal cord segmentations.
They used the determined regional atrophy in a multiple regression model, adjusted
for age, sex, and cord volume, and showed correlations with clinical scores and
patterns of atrophy.

Although a number of composite MRI biomarkers for MS have been proposed,
computing morphological features to capture atrophy and combining these features
in linear and non-linear regression models has not been well studied. As well, few
works have testing whether combining multiple spinal cord features into a single
model will provide a better indicator of disability than just using a single feature.
Introducing new atrophic features and methods to combine them may assist clini-
cians in diagnosis, provide insights into disease progression, and serve as a useful
composite biomarker.

We propose novel features extracted from MRI and the corresponding spinal cord
segmentation that are potentially more specific to the clinical status than pure area
or volume. Using these extracted features, we employ different regression models
ranging in complexity and intuitiveness, starting with simple linear regression mod-
els, then multiple linear regression models and finally, non-linear non-parametric
regression forests. To determine which of our proposed candidate features are use-
ful biomarkers, we explore our data for features that are consistently associated with
clinical state. Our results suggest that our proposed features and the more complex
regression models are capable of outperforming the predictive abilities of a linear
regression model using only spinal cord volume as the explanatory variable.
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2 Methods

In this section we describe our data and the regression problem, examine the new
candidate spinal cord features, outline the different types of regression models used,
describe our cross-validation set-up, and finally discuss how the clinical scores are
computed.

2.1 The Data and the Problem

We are given a set of n MRI scans I = {I1, . . . , In} where each 3D MRI scan Ii has
a corresponding real number clinical score yi ∈ Y, and a corresponding spinal cord
segmentation Si ∈ S. The dimensions of Ii and Si are the same. Each voxel in Si has
a value between 0 and 1, where 0 represents the background and 1 represents the
spinal cord. Voxels in Si that are on the boundary of the spinal cord are assigned a
fuzzy value between 0 and 1 that represents an estimated percentage of the voxel
that contains spinal cord (i.e., partial volume) [15].

Our objective is to create a model M, using the images I and segmentations S,
capable of predicting the patients’ clinical scores Y from novel MR images. We
extract a set of features X from I and S that are transformed by model M into values
Ŷ, such that these predicted values Ŷ = M(X) estimate the corresponding clinical
scores Y.

One approach is to set M as a simple linear regression model with the spinal cord
volume as the single explanatory variable X . This is similar to the existing literature
where a Pearson’s correlation coefficient is computed to measure the linear depen-
dency between the spinal cord volume and clinical score. However, as mentioned in
the introduction, this linear dependency using spinal cord volume does not always
reveal a strong clinical relationship. We improve on this by deriving new morpho-
logical and MRI-based appearance features X and examining ways to combine them
in more descriptive models M.

2.2 Candidate Features

We describe simple candidate morphological and appearance features X that are po-
tentially sensitive to spinal cord changes. This is not meant to be a comprehensive
set of features, but is sufficient to explore the potential of going beyond measur-
ing cord size to predict disability. We first define the commonly used spinal cord
volume, which is computed by summing all voxels, including the partial volumes
Si( j) ∈ [0,1], in the segmentation, vol = ∑

J
j=1 Si( j), where J is the total number of

voxels in Si. While spinal cord volume captures a global measure of spinal cord at-
rophy, we are also interested in features that vary at least partly independently from
area or volume, and that are sensitive to spinal cord changes at a local scale.
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Fig. 1: Illustrations of the proposed features. (a) The distances (dashed line) from
the center-of-mass (center box) to the boundary voxels (circles) make up perk. (b)
The distances to the nearest boundary point from the voxels inside the cord give
distk (brighter implies farther). (c) An ellipse is fit to the cord. (d) The normalized
intensities of the cord are considered in intk.

Our first proposed feature is designed to be more sensitive to local changes in
the spinal cord’s boundary. On each 2D axial slice of the segmentation Si, we find
voxels on the boundary between the spinal cord and background by considering
voxels in Si with a partial volume greater than 0.5 to be spinal cord. This results in
a 2D binary image that we use to extract the cord’s boundary voxels. For the kth 2D
axial slice of the spinal cord, we take the Euclidean distance between the center-
of-mass ck of the cord’s kth cross section, and the spinal cord boundary/perimeter
voxels b computed as, perk = (d(ck,b1

k), . . . ,d(ck,b
m(k)
k )), where bi

k represents the
ith boundary voxel on the kth slice, and d(c,b) computes the Euclidean distance
between the two coordinates (Fig. 1a). The number of boundary voxels m(k) can
change for each 2D slice. We find the minimum distance from the center-of-mass to
the boundary voxels in each 2D slice averaged over K 2D slices,

permin =
1
K

K

∑
k=1

min(perk). (1)

In a similar way, to compute additional features we replace the “min” function from
(1) with the mean (permean), standard deviation (perstd), and the max (permax) func-
tions.

We define a related measure that focuses on local changes in 3D by calculating
a 3D distance transform from the surface of the segmented spinal cord masked by
(or restricted to) the interior region of the cord. To compute the distance transform,
we calculate the Euclidean distance between voxels inside the spinal cord and the
nearest boundary voxel in 3D. To further differentiate this feature from the per fea-
tures, we consider voxels that contain any partial volume to be spinal cord, which
changes the boundary voxels. The distance transform for slice k with q voxels in-
side the cord is represented as distk = (t1

k , . . . , t
q(k)
k ) where t i

k is the distance from
the ith voxel inside the cord on the kth slice to the nearest 3D boundary coordinate
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(Fig. 1b). The number of voxels inside the cord, q(k), can change for each 2D slice.
In a similar fashion to (1), we replace perk with distk and the “min” function with
the mean (distmean), max (distmax), standard deviation (diststd) and the max divided
by the mean distance (distmax

mean) function averaged over the K 2D slices. For clarity
we formally define,

distmax
mean =

1
K

K

∑
k=1

max(distk)
mean(distk)

, (2)

which averages the ratio of the furthest boundary distance by the mean distance.
To compute features that are more robust to local noise, such as small segmen-

tation errors, we fit an ellipse (Fig. 1c) to each 2D cross-sectional slice of the seg-
mented spinal cord and compute the eccentricity (ecc), minor axis (axmin), and major
axis (axmaj), averaged over the length the cord.

All the features proposed so far are dependent on the geometrical characteristics
of the cord, but we also include features based on the intensities found within the
MRI. As the intensity values can vary widely in different MRI scans, we normalize
a scan’s intensities by its overall 3D scan intensities to produce z-scores. We extract
the z-scores of those voxels that are labelled as spinal cord (partial volume > 0.5)
and take the mean (intmean) and standard deviation (intstd) of the spinal cord intensity
values averaged over the K 2D slices (Fig. 1d).

2.3 Regression Models

Linear regression employs a linear function to model the relationship between the
explanatory variable (e.g. spinal cord volume) and a response variable (clinical
score). The parameters of this model are the coefficients β of the explanatory vari-
ables and the error term ε. These coefficients can be estimated from the data by
applying a least-squares fitting that minimizes the differences between the response
variable and the fitted explanatory variable. A model with only a single explanatory
variable x1, is known as simple linear regression, and is one of the simplest mod-
els to analyze. Given a dataset with n observations, this produces a straight line,
yi = β1xi1 + εi, i = 1, . . . ,n. Multiple linear regression builds on this by adding r
explanatory variables to the model, yi = β1xi1 + . . .+βrxir + εi.

While these models assume a linearity of the underlying relations, we also ex-
plore a more flexible, non-linear, non-parametric model, known as a regression for-
est. A regression forest significantly differs from the previously described models
as it is completely learned from the data and makes no assumptions about the un-
derlying distributions [2].
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2.4 Training and Testing the Models

The models in section 2.3, are described in order of increasing complexity. With
this added complexity, we increase the potential to accurately model the underlying
function, but also increase the difficulty in intuitively understanding the model and
increase the likelihood of over-fitting the model to the training data. To reduce the
possibility of over-fitting, we divide our data into a training and testing set. Given
the relatively small size of our dataset, we use leave-one-out cross-validation. This
is repeated for all samples to give us an indication of the robustness and generaliz-
ability of our regression model and chosen features.

2.5 Clinical Scores

As discussed in the introduction, the EDSS and the MSFC scores, which we aim
to predict from X , are commonly used to quantify clinical disability. We choose
to focus on the MSFC score rather than the EDSS score because the MSFC cap-
tures disability to which the EDSS score is relatively insensitive, such as arm/hand
function. In addition, the EDSS scores tend to exhibit a poor distribution due to
the non-linearity of the scale, with many patients clustered between 4.5 and 6.5
(Fig. 2a).

The MSFC score tests for: upper extremity function, determined by a 9-hole peg
test (9-HPT); walking speed, measured by a timed 25-foot walk (T25W); and cog-
nitive function, evaluated by a paced auditory serial addition test (PASAT). These
three tests are shown to vary relatively independently, be sensitive to changes over
time, and capture aspects of MS that are not captured in the EDSS score [3]. These
components averaged together compose the MSFC score,

ZMSFC = (Z9-HPT−ZT25W +ZPASAT)/3 (3)

where the scores are normalized to produce z-scores using a reference population
that includes healthy controls [3].

While this composite score is used to give an overall indication of the progression
of multiple sclerosis, we do not expect the cognitive component, ZPASAT, to have a
strong causal relation with spinal cord atrophy as the spinal cord is not directly
related to cognitive function. We test this by computing the Pearson’s correlation
coefficient with the cognitive test ZPASAT and spinal cord volume vol, and do not
find a significant correlation (r = -0.016, p-value = 0.93). For this reason, we re-
move ZPASAT and only include the physical disability tests to define a new clinical
measurement of physical disability,

Zphysical = (Z9-HPT−ZT25W)/2. (4)

59



Proceedings of MICCAI 2013 Workshop: Computational Spine Imaging

−1 −0.5 0 0.5 1
2

3

4

5

6

7

8

Z
MSFC

E
D

S
S

(a) EDSS vs. ZMSFC

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Z
physical

Z
M

S
F

C

(b) ZMSFC vs. Zphysical

Fig. 2: The distributions of scores are shown. (a) The ZMSFC scores have a wider
distributions than EDSS scores. As expected, as EDSS decreases, there is a trend
for ZMSFC to increase. (b) We remove the cognitive component from ZMSFC to form
Zphysical, slightly changing the distributions (deviations from dashed line).

This combined physical score, Zphysical, is the clinical score we use as the response
variable for this work. The distribution of values and the changes in correlation
between ZMSFC and Zphysical are shown in Fig. 2b.

3 Results

We validate our proposed features and models using 30 3D T1-weighted MRIs ac-
quired with a spoiled gradient echo sequence and an MR field strength of either 1.5
tesla or 3.0 tesla. These scans were gathered from multiple centers and parameters
varied by site. Each scan is from a different patient (age ranged from 34 to 64) with
secondary progressive MS. For each 3D MRI, we have its corresponding clinical
score as described in section 2.5 and a segmentation of the spinal cord. To ensure
reasonably accurate segmentations, we use a seeded semi-automatic method similar
to Tench et al. [15] where a user-guided region growing algorithm marks the spinal
cord voxels with a 1 and the background voxels with a 0. Due to the limited resolu-
tion of the MRIs and the small size of the cord, voxels on the boundary of the spinal
cord, composed both of spinal cord and background, make up approximately 25%
of the total voxels in the cross-sectional area [15]. To give an estimate of the spinal
cord area contribution these boundary voxels make, the boundary voxels are as-
signed a fuzzy value between 0 and 1, computed as a function of the cord, boundary
and cerebrospinal fluid intensities, based on equation (2) in [15]. The original MRI
voxel resolutions were either 0.976 × 0.976 × 1 mm or 0.976 × 0.976 × 1.3 mm,
but are normalized via trilinear interpolation to 1 × 1 × 1 mm. When computing
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our features X , we only consider the first 20 2D slices starting from and including
the C3 region and moving inferior, i.e. K=20 in (1) and (2).

3.1 Error Metrics

To quantify how closely the predictions Ŷ produced by our model are to the true
clinical scores Y , we use the following metrics. We compute the mean absolute
error (MAE) by taking the mean of the absolute difference between the predicted
score and the true clinical score, MAE = 1

n ∑
n
i |ŷi− yi|, giving equal weight to all

errors. To get an indication of the variability in the error, we compute the standard
deviation of absolute error as, SAE = std(|Ŷ −Y |). To give a higher weight to larger

errors, we report the root mean square error, RMSE=
√

1
n ∑

n
i (ŷi− yi)2. MAE, SAE,

and RMSE values closer to zero indicate a better model. To indicate the consistency
of our predictions, we also compute the Pearson’s correlation coefficient and its
corresponding p-value between the predicted clinical scores Ŷ and the true clinical
scores Y.

3.2 Simple Linear Regression with Spinal Cord Volume

To establish a baseline test on which we aim to improve, we use a simple linear
regression model with spinal cord volume as the explanatory variable similar to what
is done by Losseff et al. [8]. We compute the volume of the segmented cord (vol) and
use leave-out-one cross-validation to train our model and test on the omitted volume.
As expected from the existing literature [1, 7, 8, 12, 16], we detect a moderate yet
statistically significant correlation between volume and clinical score (vol: r=0.473,
p=0.00824). The predictive ability for a linear regression model using volume as the
explanatory variable is reported in Table 1 (row 1) and shown in Fig. 3a.

3.3 Simple Linear Regression with Proposed Features

In our second test, we examine each proposed feature’s ability to act as the explana-
tory variable in a linear model. For each proposed feature in section 2.2, we compute
the Pearson’s correlation coefficient between the proposed feature and the clinical
scores. We find that axmin, permean, permin,distmean

max all provide a slight increase in
correlation when compared to vol. Of these features, permin shows the strongest
improvement in Pearson’s correlation (permin: r=0.565, p=0.00115; vs. volume vol:
r=0.473, p=0.00824) and the p-value of permin survives the Bonferroni correction
for multiple testing (0.00115 < 0.05

13 ).
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(a) Linear regression using cord volume
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(b) Regression forest using two features

Fig. 3: Actual vs. predicted clinical scores are shown. (a) Spinal cord volume vol is
used as the explanatory variable in a simple linear regression model. (b) A regression
forest trained on two selected features, axmaj and permin, demonstrates an improved
correlation. Deviations from the dashed line are errors.

We test if permin is a stronger explanatory variable than volume by performing
the same cross-validation procedure. We report our results in Table 1 (row 2), which
demonstrates that not only does permin correlate better than volume, but it gives a
more consistent score and is less susceptible to outliers. This is shown by the lower
MAE, SAE, and RMSE scores, and higher Pearson’s correlation when compared
to a model using volume. This suggests that permin may be a better indicator of
physical disability than spinal cord volume.

3.4 Multiple Linear Regression with Proposed Features

To explore the use of multiple explanatory variables in a linear regression model,
using the 13 candidate features described in section 2.2, we form separate models
where each feature can either be included or excluded from the model, for a total of
213 = 8192 possible combinations. To get a sense of which variables generalize well,
we test each model using leave-one-out cross-validation. We correct for multiple
testing by applying the positive False Discovery Rate (pFDR) [14] to reduce the
likelihood that a positive result is a Type I error. As our goal is to determine if
a multiple linear regression model can provide improvements over simple linear
regression, we compute how many models result in a RMSE that are less than the
RMSE reported using the linear model with the explanatory variable permin (i.e.
RMSE < 0.527). There are 292 such models and from this subset of models, we
find the maximum p-value to be 0.00684 with a corresponding q-value of 0.000172.
Out of all our tests, there are 749 tests with a p-value less than 0.00684, indicating
a low number (749×0.000172 < 1) of improved models that are potentially false
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positives. The features selected from the model with the lowest RMSE are: best7MR
= {intmn,axmin, permean, permax, permin,distmax,distmean

max }, and the prediction results
are reported in Table 1 (row 3). We note that this model with multiple features shows
a significant reduction in prediction error when compared to the models using a
single explanatory variable.

However, as the issue of how best to correct for multiple testing is still an
open one, we further examine our models for a more conservative selection of fea-
tures. We examine what features were consistently selected in the top 25 models.
As can been seen in Fig. 4, the same five features are selected in nearly every
model suggesting these features jointly are useful. Based on this trend, we form
a linear regression model using only the consistently selected features, sel5MR =
{intmean, permean, permax, distmax,distmean

max }, and report the cross-validated results in
Table 1 (row 4). While the predictive ability of this model is less than the best7MR
predicting model, this model has two less explanatory variables than the best7MR
model, which may be more generalizable in a novel dataset (even though we cross-
validated our dataset). These improvements over the models with a single explana-
tory variable, suggests that it is useful to combine multiple spinal cord features
within a single model.
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Fig. 4: The number of times a features was selected in the top (lowest RMSE) 25
multiple linear regression models is graphed. The y-axis shows the number of times
the feature was selected and the x-axis is the feature selected. We can see that two
features were selected in all the top 25 models, permax,distmean

max , two were selected
in 24 models, intmean, permean, and one was selected in 23 models, distmax. These
five features are consistently selected which suggests their general importance in
forming the model.
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3.5 Non-linear Regression Forest with Proposed Features

In our final tests, we use a non-linear regression forest (RF) implemented with MAT-
LAB’s TreeBagger class (R2012a; The MathWorks Inc., Natick, MA). The mini-
mum number of observations per leaf is set to one. All other parameters are left to
their default settings except for the number of trees which we describe below. To
see if a non-linear model, trained on a single feature can outperform a linear model,
we train a RF with 250 trees on each proposed feature from section 2.2. Out of our
13 proposed features, we find that permin on its own returns superior results when
compared to the other models that use only a single feature, Table 1 (row 5). To
consider multiple features in our RF, as was done in section 3.4, we try all possible
combinations of features (213) in a RF. However, to lower computational cost, we
use 80 trees with 6-fold (instead of leave-one-out) cross validation when exploring
all the feature combinations. We find those features used in the model that produces
the lowest RMSE. Correcting for multiple testing using pFRR (sec. 3.4), returns less
than 1 expected number of false positives.

Similar to section 3.4, we also examine a more conservative selection of features
by choosing those features that are consistently in the 25 models with lowest RMSE.
We find that the features used in the lowest RMSE model and the features consis-
tently chosen in the 25 lowest RMSE models are the same. These selected features
are the axmaj (chosen in 24 out of 25 models) and the permin (chosen in 25 out of
25 models). We train another RF with 250 trees on sel2RF = {axmaj, permin} and
show leave-one-out cross-validated results that outperform all our previous regres-
sion models, reported in Table 1 (row 6) and shown in Fig. 3b. This demonstrates
that select novel morphological features, combined in a non-linear, non-parametric
regression model can potentially provide more accurate predictions of MS physi-
cal disability than a linear model, and outperforms predictions based on spinal cord
volume.

4 Conclusion

We proposed new morphological and appearance features to capture the subtle
changes in a patient’s spinal cord as it undergoes atrophy due to multiple sclero-
sis. These proposed features were combined in a regression model and our results
indicate that they are potentially useful imaging biomarkers for multiple sclero-
sis. When only considering any one particular feature, the distance from the cord’s
center-of-mass to the cord’s boundary, permin, provided the strongest results and
was an improvement over spinal cord volume at clinical prediction.

Our results also suggest that combining the selected features in a regression
model improves the predictive ability over a simple linear regression model using
any one of the tested features, including volume, alone. As well, a non-linear re-
gression forest, trained on select morphological features, appears to be a promising
approach to improve on the predictive ability of linear models. To ensure generaliz-
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Table 1: The model column contains the different type of models explored where
linear represents a linear model, multiple represents a multiple linear regression
model, and RF represents a regression forest model. The features column contains
the different features the model was trained on, where vol represents the volume of
the spinal cord, permin represents the minimal distance to the cord’s center-of-mass
from the cord’s boundary, best represents the combination of features that gives
the lowest RMSE error, and sel are the features consistently selected in our top 25
models. The error metrics we report are the Mean Absolute Error (MAE), the Root
Mean Squared Error (RMSE), the Standard deviation of Absolute Error (SAE), the
Pearson’s correlation coefficient r and its corresponding p-value before correction
for multiple comparisons.

model features MAE SAE RMSE r p-value

linear vol 0.448 0.326 0.551 0.367 0.0460841
linear permin 0.444 0.290 0.527 0.464 0.0097723
multiple best7MR 0.379 0.253 0.453 0.667 0.00005645
multiple sel5MR 0.414 0.233 0.473 0.617 0.00028511
RF permin 0.381 0.251 0.453 0.682 0.00003277
RF sel2RF 0.293 0.201 0.353 0.803 0.00000009

ability of our results (i.e. that the proposed biomarkers and models are not specific
to our data and that our findings are not due to a Type I error), even though our data
came from multiple centers, future work must involve larger datasets representing a
greater variety in imaging, pathological, and clinical parameters.
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